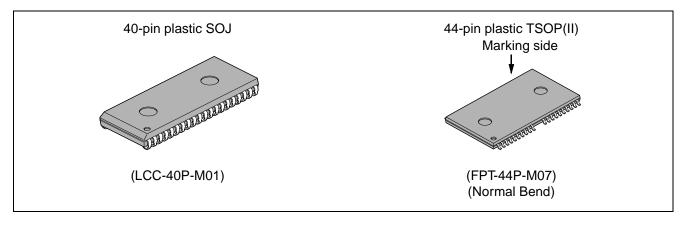
MEMORY смоз 256K × 16 BIT HYPER PAGE MODE DYNAMIC RAM

MB814265-60/-70

CMOS 262,144 \times 16 Bit Hyper Page Mode Dynamic RAM

DESCRIPTION

The Fujitsu MB814265 is a fully decoded CMOS Dynamic RAM (DRAM) that contains 4,194,304 memory cells accessible in 16-bit increments. The MB814265 features the "hyper page" mode of operation which provides extended valid time for data output and higher speed random access of up to 512 ×16-bits of data within the same row than the fast page mode. The MB814265-60/-70 DRAMs are ideally suited for memory applications such as embedded control, buffer, portable computers, and video imaging equipment where very low power dissipation and high bandwidth are basic requirements of the design.


The MB814265 is fabricated using silicon gate CMOS and Fujitsu's advanced four-layer polysilicon process. This process, coupled with three-dimensional stacked capacitor memory cells, reduces the possibility of soft errors and extends the time interval between memory refreshes.

PRODUCT LINE & FEATURES

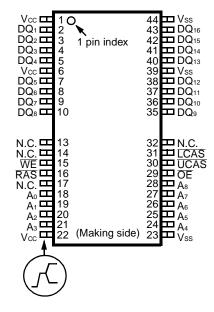
Param	neter	MB814265-60	MB814265-70
RAS Access Time		60 ns max.	70 ns max.
CAS Access Time		20 ns max.	20 ns max.
Address Access Time		30 ns max.	35 ns max.
Random Cycle Time		104 ns max.	119 ns min.
Hyper Page Mode Cycle Ti	me	25 ns min.	30 ns min.
Low Dower Dissinction	Operating current	523 mW max.	462 mW max.
Low Power Dissipation	Standby current	11 mW max. (TTL level)/5.5	mW max. (CMOS level)

- 262,144 words × 16 bit organization
- Silicon gate, CMOS, Advanced Stacked Capacitor Cell
- · All input and output are TTL compatible
- 512 refresh cycles every 8.2 ms
- + 9 rows \times 9 columns, addressing scheme
- Early Write or OE controlled Write capability
- RAS-only, CAS-before-RAS, or Hidden Refresh
- Hyper page mode, Read-Modify-Write capability
- On chip substrate bias generator for high performance

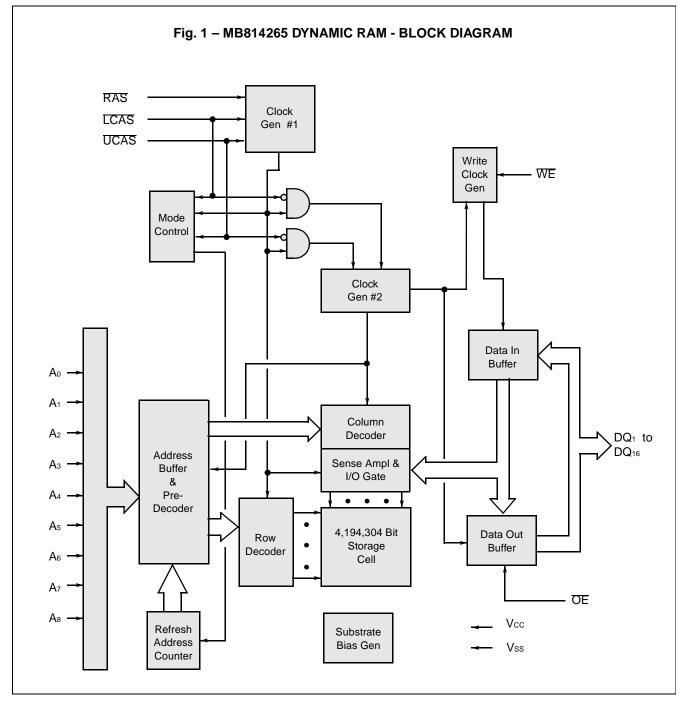
PACKAGE

Package and Ordering Information

- 40-pin plastic (400 mil) SOJ, order as MB814265-xxPJ


- 44-pin plastic (400 mil) TSOP-II with normal bend leads, order as MB814265-xxPFTN

■ PIN ASSIGNMENTS AND DESCRIPTIONS


	40-Pin (TOP V		
	<lcc-40f< td=""><td>,</td><td></td></lcc-40f<>	,	
(`
Vcc	1	40	Vss
DQ1	2	39	DQ16
DQ2	3	38	DQ15
DQ3 🗖	4	37	DQ 14
DQ4 🗖	5	36	DQ 13
Vcc 🗖	6	35	Vss
DQ5 🗖	7	34	DQ 12
DQ6	8	33	DQ 11
DQ7 🗖	9	32	DQ 10
DQ8 🗆	10	31	⊒ DQ9
N.C. 🗆	11	30	□ N.C.
N.C. 🗆	12	29	
WE	13	28	
RAS 🗆	14	27	
N.C. □	15	26	A8
A∘∟	16	25	A7
A1 🗆	17	24	A6
	18	23	⊒ A₅
A3	19	22	
Vcc 🗆	20	21	Vss

Designator	Function			
Ao to Aa	Address inputsrow: A_0 to A_8 column: A_0 to A_8 refresh: A_0 to A_8			
RAS	Row address strobe			
LCAS	Lower column address strobe			
UCAS	Upper column address strobe			
WE	Write enable			
ŌĒ	Output enable			
DQ1 to DQ16	Data Input/Output			
Vcc	+5.0 volt power supply			
Vss	Circuit ground			
N.C.	No connection			

44-Pin TSOP (II):
(TOP VIEW)
<normal bend:="" fpt-44p-m07=""></normal>

BLOCK DIAGRAM

		Clo	ock In	put		Add	ress	lı	nput/Ou	tput Da	ta		
Operation Mode	RAS	LCAS	UCAS	WE	OE	Row	Column	DQ₁ t	O DQ8	DQ9 t	0 DQ16	Refresh	Note
	RAJ	LCAS	UCAS	VVE	UE	ROW	Column	Input	Output	Input	Output		
Standby	Н	Н	Н	Х	Х				High-Z		High-Z		
Read Cycle	L	L H L	H L L	н	L	Valid	Valid	_	Valid High-Z Valid	_	High-Z Valid Valid	Yes*	tʀcs ≥ tʀcs (min)
Write Cycle (Early Write)	L	L H L	H L L	L	х	Valid	Valid	Valid Valid	High-Z	 Valid Valid	High-Z	Yes*	twcs ≥ twcs (min)
Read-Modify- Write Cycle	L	L H L	H L L	H→L	L→H	Valid	Valid	Valid Valid	Valid High-Z Valid	 Valid Valid	High-Z Valid Valid	Yes*	
RAS-only Refresh Cycle	L	н	н	х	х	Valid	_		High-Z	_	High-Z	Yes	
CAS-before- RAS Refresh Cycle	L	L	L	x	х	_	_	_	High-Z	_	High-Z	Yes	tcsr ≥ tcsr (min)
Hidden Refresh Cycle	H→L	L H L	H L L	н	L			_	Valid High-Z Valid	_	High-Z Valid Valid	Yes	Previous data is kept

■ FUNCTIONAL TRUTH TABLE

Note: X ; "H" or "L"

*; It is impossible in Hyper Page Mode.

■ FUNCTIONAL OPERATION

ADDRESS INPUTS

Eighteen input bits are required to decode any sixteen of 4,194,304 cell addresses in the memory matrix. Since only nine address bits (A₀ to A₈) are available, the column and row inputs are separately strobed by LCAS or UCAS and RAS as shown in Figure 1. First, nine row address bits are input on pins A₀-through-A₉ and latched with the row address strobe (RAS) then, nine column address bits are input and latched with the column address strobe (LCAS or UCAS). Both row and column addresses must be stable on or before the falling edges of RAS and LCAS or UCAS, respectively. The address latches are of the flow-through type; thus, address information appearing after tran (min) + t_T is automatically treated as the column address.

WRITE ENABLE

The read or write mode is determined by the logic state of \overline{WE} . When \overline{WE} is active Low, a write cycle is initiated; when \overline{WE} is High, a read cycle is selected. During the read mode, input data is ignored.

DATA INPUT

Input data is written into memory in either of three basic ways : an early write cycle, an \overline{OE} (delayed) write cycle, and a read-modify-write cycle. The falling edge of \overline{WE} or $\overline{LCAS} / \overline{UCAS}$, whichever is later, serves as the input data-latch strobe. In an early write cycle, the input data of DQ₁-DQ₈ is strobed by \overline{LCAS} and DQ₉-DQ₁₆ is strobed by \overline{UCAS} and the setup/hold times are referenced to each \overline{LCAS} and \overline{UCAS} because \overline{WE} goes Low before $\overline{LCAS} / \overline{UCAS}$. In a delayed write or a read-modify-write cycle, \overline{WE} goes Low after $\overline{LCAS} / \overline{UCAS}$; thus, input data is strobed by \overline{WE} and all setup/hold times are referenced to the write-enable signal.

DATA OUTPUT

The three-state buffers are TTL compatible with a fanout of two TTL loads. Polarity of the output data is identical to that of the input; the output buffers remain in the high-impedance state until the column address strobe goes Low. When a read or read-modify-write cycle is executed, valid outputs and High-Z state are obtained under the following conditions:

- t_{RAC} : from the falling edge of RAS when t_{RCD} (max) is satisfied.
- tcac : from the falling edge of $\overline{\text{LCAS}}$ (for DQ₁-DQ₈) $\overline{\text{UCAS}}$ (for DQ₉-DQ₁₆) when trcd is greater than trcd (max).
- taa : from column address input when trad is greater than trad (max), and trcd (max) is satisfied.
- to EA : from the falling edge of \overline{OE} when \overline{OE} is brought Low after trac, tcac, or taa.
- tOEZ : from OE inactive.
- toff : from \overline{CAS} inactive while \overline{RAS} inactive.
- torr : from \overline{RAS} inactive while \overline{CAS} inactive.
- twez : from \overline{WE} active while \overline{CAS} inactive.

The data remains valid after either \overline{OE} is inactive, or both \overline{RAS} and \overline{LCAS} (and/or \overline{UCAS}) are inactive, or \overline{CAS} is reactived. When an early write is executed, the output buffers remain in a high-impedance state during the entire cycle.

HYPER PAGE MODE OPERATION

The hyper page mode operation provides faster memory access and lower power dissipation. The hyper page mode is implemented by keeping the same row address and strobing in successive column addresses. To satisfy these conditions, \overline{RAS} is held Low for all contiguous memory cycles in which row addresses are common. For each page of memory (within column address locations), any of 512×16 -bits can be accessed and, when multiple MB814265s are used, \overline{CAS} is decoded to select the desired memory page. Hyper page mode operations need not be addressed sequentially and combinations of read, write, and/or read-modify-write cycles are permitted. Hyper page mode features that output remains valid when \overline{CAS} is inactive until \overline{CAS} is reactivated.

■ ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value	Unit
Voltage at any pin relative to Vss	Vin, Vout	-0.5 to +7.0	V
Voltage of $V_{\mbox{\scriptsize CC}}$ supply relative to $V_{\mbox{\scriptsize SS}}$	Vcc	-0.5 to +7.0	V
Power Dissipation	PD	1.0	W
Short Circuit Output Current	Ιουτ	–50 to +50	mA
Storage Temperature	Тѕтс	-55 to +125	°C
Temperature under Bias	TBIAS	0 to 70	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Notes	Symbol	Min.	Тур.	Max.	Unit	Ambient Operating Temp.			
	*1	Vcc	4.5	5.0	5.5	V				
Supply Voltage	I	Vss	0	0	0	V	0°C to 170°C			
Input High Voltage, all inputs	*1	Vін	2.4	—	6.5	V	0°C to +70°C			
Input Low Voltage, all inputs*	*1	VIL	-0.3		0.8	V				

* : Undershoots of up to -2.0 volts with a pulse width not exceeding 20 ns are acceptable.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

■ CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1 \text{ MHz})$

				e e , i = i iii i z)
Parameter	Symbol	Тур.	Max.	Unit
Input Capacitance, Ao toAa	CIN1	_	5	pF
Input Capacitance, RAS, LCAS, UCAS, WE, OE	CIN2	-	7	pF
Input/Output Capacitance, DQ1 to DQ16	CDQ	_	7	pF

■ DC CHARACTERISTICS

					Va	lue	
Parameter		Notes	Symbol	Conditions	Min.	Max.	Unit
Output high voltage)	*1	Vон	Іон = -5.0 mA	2.4		V
Output low voltage		*1	Vol	IoL = +4.2 mA		0.4	V
Input leakage curre	nt (a	ny input)	lı(L)	$\begin{array}{l} 0 \ V \leq V_{\text{IN}} \leq 5.5 \ V; \\ 4.5 \ V \leq V_{\text{CC}} \leq 5.5 \ V; \\ V_{\text{SS}} = 0 \ V; \ \text{All other pins} \\ not \ under \ test = 0 \ V \end{array}$	-10	10	μΑ
Output leakage current			DQ(L)	$0 \text{ V} \le V_{\text{OUT}} \le 5.5 \text{ V};$ Data out disabled	-10	10	
Operating current		MB814265-60	Icc1	RAS, LCAS & UCAS cycling;		95	
(Average power supply current)	*2	MB814265-70		t _{RC} = min	_	84	- mA
Standby current		TTL level		RAS = LCAS = UCAS = V⊪		2.0	
(Power supply current)		CMOS level	- Icc2	$RAS = LCAS = UCAS \ge V_{CC} - 0.2 V$		1.0	mA
Refresh current #1		MB814265-60		$\overline{\text{LCAS}} = \overline{\text{UCAS}} = V_{\text{H}}, \overline{\text{RAS}}$ cycling;		95	
(Average power supply current)	*2	MB814265-70	Іссз	t _{RC} = min	_	84	- mA
Hyper page mode		MB814265-60		$\overline{RAS} = V_{\mathbb{L}}, \overline{LCAS} / \overline{UCAS}$ cycling;		95	
current	*2	MB814265-70 Icc4 ICC4 ICC3 = Vil., ICCAS / OCCAS Cycling, thPc = min				84	mA
Refresh current #2		MB814265-60	RAS cycling;			95	
(Average power supply current)	*2	MB814265-70	- Iccs	CAS-before-RAS; trc = min		84	mA

■ AC CHARACTERISTICS

	commended operating conditions unless o			4265-60	Notes 3,	4265-70	
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
1	Time Between Refresh	t REF	_	8.2	_	8.2	ms
2	Random Read/Write Cycle Time	t RC	104		119	_	ns
3	Read-Modify-Write Cycle Time	t rwc	138		158	_	ns
4	Access Time from RAS *6, *9	t rac	_	60		70	ns
5	Access Time from CAS *7, *9	tcac		20		20	ns
6	Column Address Access Time *8, *9	taa		30		35	ns
7	Output Hold Time	tон	5		5		ns
8	Output Hold Time from CAS	tонс	5	_	5	—	ns
9	Output Buffer Turn On Delay Time	ton	0	_	0	—	ns
10	Output Buffer Turn Off Delay Time *10	toff	_	15	_	15	ns
11	Output Buffer Turn Off Delay Time from RAS	t ofr	_	15	_	15	ns
12	Output Buffer Turn Off Delay Time from WE	twez	_	15	_	15	ns
13	Transition Time	t⊤	1	50	1	50	ns
14	RAS Precharge Time	t RP	40	_	45	—	ns
15	RAS Pulse Width	t RAS	60	100000	70	100000	ns
16	RAS Hold Time	t RSH	20	_	20	—	ns
17	CAS to RAS Precharge Time *21	t CRP	0	_	0	_	ns
18	RAS to CAS Delay Time *11, *12, *22	t RCD	14	40	14	50	ns
19	CAS Pulse Width	tcas	10	_	10	—	ns
20	CAS Hold Time	tсsн	40	_	50	—	ns
21	CAS Precharge Time (Normal) *19	t CPN	10	_	10	_	ns
22	Row Address Setup Time	t ASR	0	_	0	_	ns
23	Row Address Hold Time	t RAH	10	_	10	_	ns
24	Column Address Setup Time	tASC	0	_	0	_	ns
25	Column Address Hold Time	t сан	10	_	10	—	ns
26	RAS to Column Address Delay Time *13	t RAD	12	30	12	35	ns
27	Column Address to RAS Lead Time	t RAL	30	_	35	—	ns
28	Column Address to CAS Lead Time	t CAL	23	_	28	—	ns
29	Read Command Setup Time	trcs	0	_	0	_	ns
30	Read Command Hold Time *14	t rrh	0	_	0	_	ns
31	Read Command Hold Time *14	trcн	0	_	0		ns

(Continued)

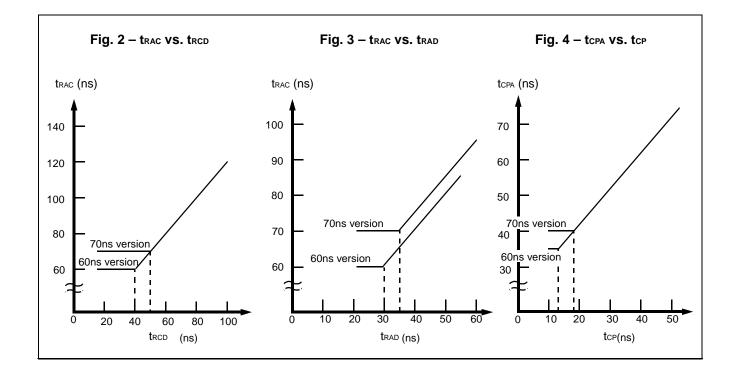
Ne	Poromotor Notor	Symbol	MB81	4265-60	MB814	4265-70	Unit
No.	Parameter Notes	Symbol	Min.	Max.	Min.	Max.	Unit
32	Write Command Setup Time *15	twcs	0	_	0		ns
33	Write Command Hold Time	twcн	10	_	10	_	ns
34	WE Pulse Width	twp	10	_	10	_	ns
35	Write Command to RAS Lead Time	trwL	15	_	20	_	ns
36	Write Command to CAS Lead Time	tcwL	10	_	10	_	ns
37	DIN Setup Time	tos	0	_	0	—	ns
38	DIN Hold Time	tон	10	_	10	_	ns
39	RAS to WE Delay Time	trwd	77	_	87	_	ns
40	CAS to WE Delay Time	tcwp	37	_	37	_	ns
41	Column Address to WE Delay Time	tawd	47	_	52	_	ns
42	RAS Precharge Time to CAS Active Time (Refresh Cycles)	trpc	10	_	10	_	ns
43	CAS Setup Time for CAS-before-RAS Refres	n t _{CSR}	0	_	0	_	ns
44	CAS Hold Time for CAS-before-RAS Refresh	t CHR	10	_	10		ns
45	Access Time from OE *9	t OEA	—	20		20	ns
46	Output Buffer Turn Off Delay from *10	toez		15	_	15	ns
47	OE to RAS Lead Time for Valid Data	toel	10	_	10		ns
48	OE to CAS Lead Time	tcol	5	_	5		ns
49	OE Hold Time Referenced to WE *16	tоен	0	_	0	_	ns
50	OE to Data in Delay Time	toed	15	_	15	_	ns
51	DIN to CAS Delay Time *17	tdzc	0	_	0	_	ns
52	DIN to OE Delay Time *17	tdzo	0	_	0	_	ns
53	CAS to Data in Delay Time	tcdd	15	_	15	_	ns
54	RAS to Data in Delay Time	trdd	15	_	15	_	ns
55	Column Address Hold Time from RAS	tar	26	_	26	_	ns
56	Write Command Hold Time from RAS	twcr	24	_	24	_	ns
57	DIN Hold Time Referenced to RAS	t DHR	24	_	24	_	ns
58	OE Precharge Time	t OEP	10	_	10	_	ns
59	OE Hold Time Referenced to CAS	toecн	10	_	10	—	ns
60	WE Precharge Time	twpz	10	_	10	—	ns
61	WE to Data in Delay Time	twed	15	_	15	—	ns
62	Hyper Page Mode RAS Pulse Width	t rasp	60	200000	70	200000	ns

(Continued)

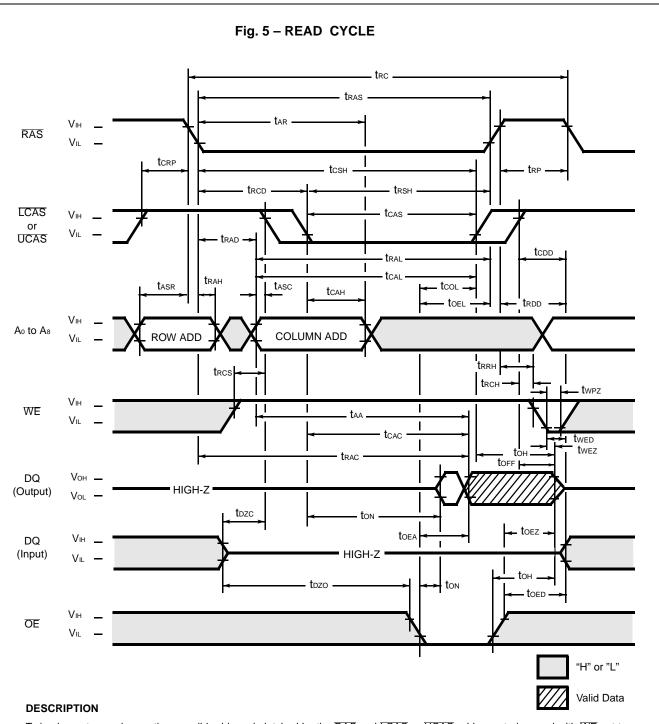
(Continued)

No.	Parameter Notes	Symbol	MB814	265-60	MB814	Unit	
NO.	Faiametei Notes	Symbol	Min.	Max.	Min.	Max.	Unit
63	Hyper Page Mode Read/Write Cycle Time	tнрс	25		30	_	ns
64	Hyper Page Mode Read-Modify-Write Cycle Time	t HPRWC	66	_	71	_	ns
65	Access Time from CAS Precharge *9, *18	t CPA	_	35	—	40	ns
66	Hyper Page Mode CAS Pulse Width	t _{CP}	10		10	—	ns
67	Hyper Page Mode RAS Hold Time from CAS Precharge	t RHCP	35	_	40		ns
68	Hyper Page Mode CAS Precharge to WE Delay Time	t CPWD	52	_	57		ns

Notes: *1. Referenced to Vss. To all Vcc (Vss) pins, the same supply voltage should be applied.


*2. Icc depends on the output load conditions and cycle rates; The specified values are obtained with the output open.

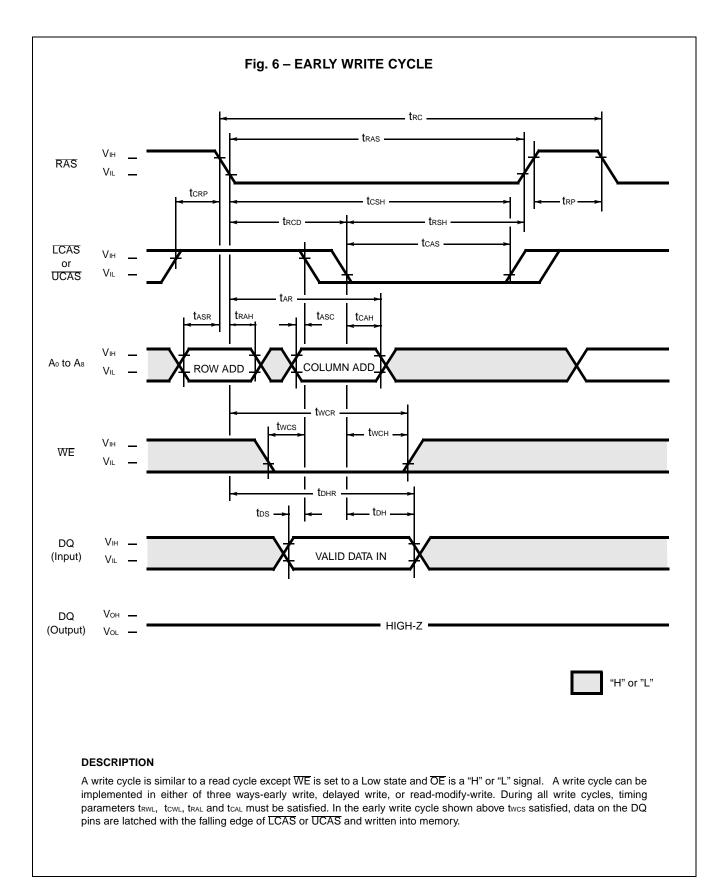
Icc depends on the number of address change as $\overline{RAS} = V_{IL}$ and $\overline{UCAS} = V_{IH}$, $\overline{LCAS} = V_{IH}$, $V_{IL} > -0.3 \text{ V}$.

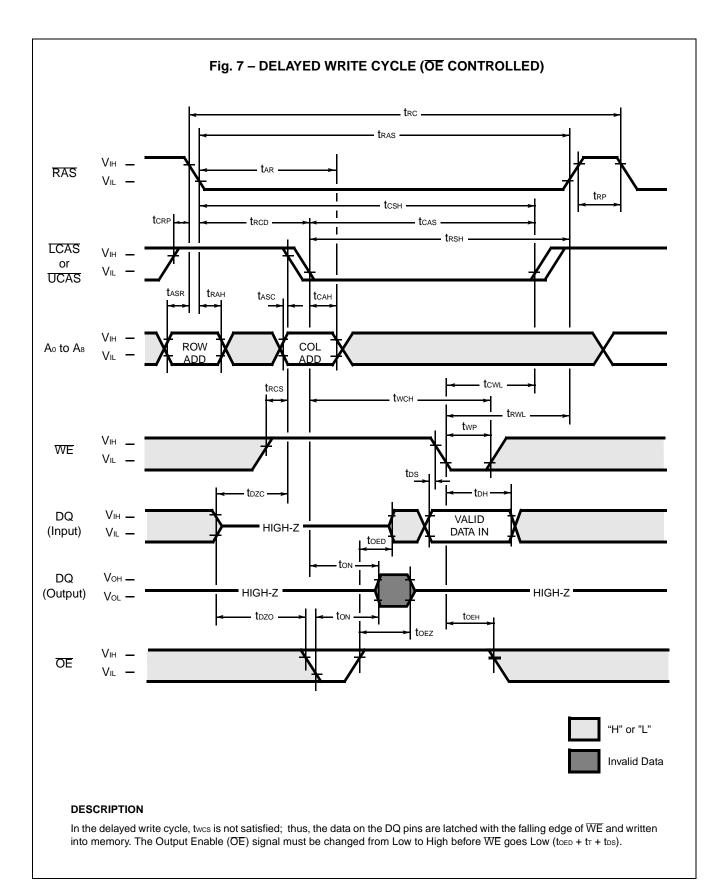

Icc1, Icc3 and Icc5 are specified at one time of address change during $RAS = V_{IL}$ and $UCAS = V_{IH}$, ICAS = VIH.

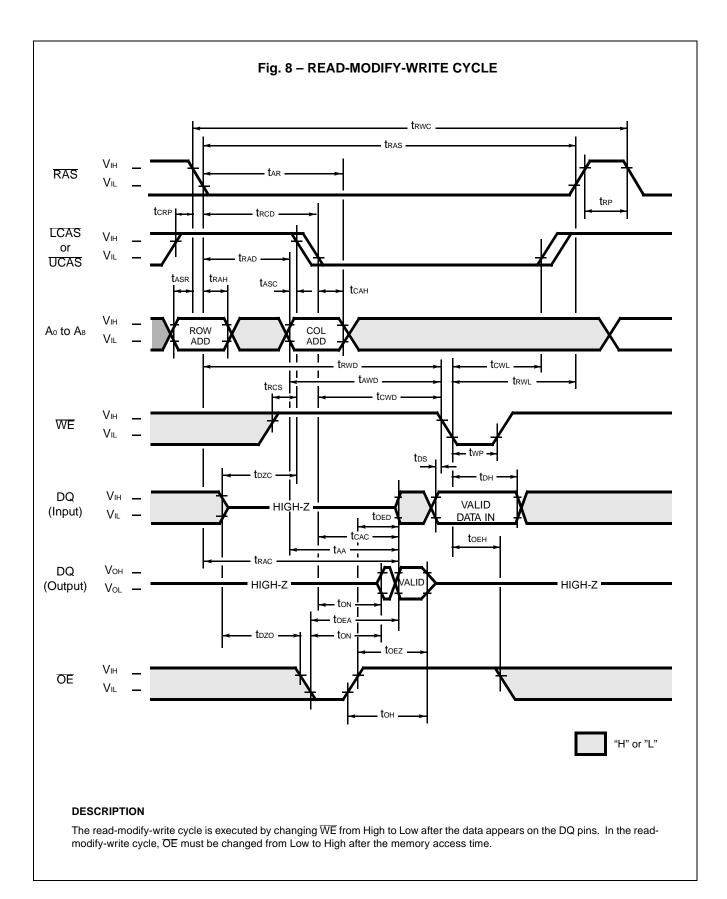
Icc4 is specified at one time of address change during one Page cycle.

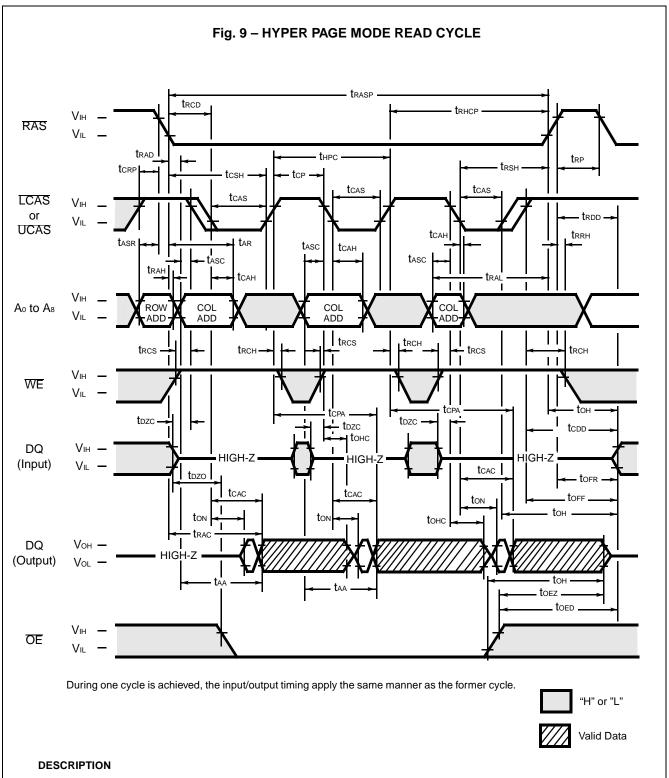
- *3. An initial pause (RAS = CAS = V_{IH}) of 200 μs is required after power-up followed by any eight RASonly cycles before proper device operation is achieved. In case of using internal refresh counter, a minimum of eight CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
- *4. AC characteristics assume $t_T = 5$ ns.
- *5. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also transition times are measured between V_{IH} (min) and V_{IL} (max).
- *6. Assumes that t_{RCD} ≤ t_{RCD} (max), t_{RAD} ≤ t_{RAD} (max). If t_{RCD} is greater than the maximum recommended value shown in this table, t_{RAC} will be increased by the amount that t_{RCD} exceeds the value shown. Refer to Fig. 2 and 3.
- *7. If trcd \geq trcd (max), trad \geq trad (max), and tasc \geq taa tcac tt, access time is tcac.
- *8. If trad \geq trad (max) and tasc \leq taa tcac tt, access time is taa.
- *9. Measured with a load equivalent to two TTL loads and 100 pF.
- *10. toFF and toEZ are specified that output buffer change to high impedance state.
- *11. Operation within the tRCD (max) limit ensures that tRAC (max) can be met. tRCD (max) is specified as a reference point only; if tRCD is greater than the specified tRCD (max) limit, access time is controlled exclusively by tCAC or tAA.
- *12. trcd (min) = trah (min) + 2tt + tasc (min).
- *13. Operation within the tRAD (max) limit ensures that tRAC (max) can be met. tRAD (max) is specified as a reference point only; if tRAD is greater than the specified tRAD (max) limit, access time is controlled exclusively by tCAC or tAA.
- *14. Either tRRH or tRCH must be satisfied for a read cycle.
- *15. twcs is specified as a reference point only. If twcs ≥ twcs (min) the data output pin will remain High-Z state through entire cycle.
- *16. Assumes that twcs < twcs (min).
- *17. Either tozc or tozo must be satisfied.
- *18. tcPA is access time from the selection of a new column address (that is caused by changing both UCAS and LCAS from "L" to "H"). Therefore, if tcP is long, tcPA is longer than tcPA (max).
- *19. Assumes that CAS-before-RAS refresh.
- *20. The last CAS rising edge.
- *21. The first CAS falling edge.

To Top / Lineup / Index MB814265-60/MB814265-70

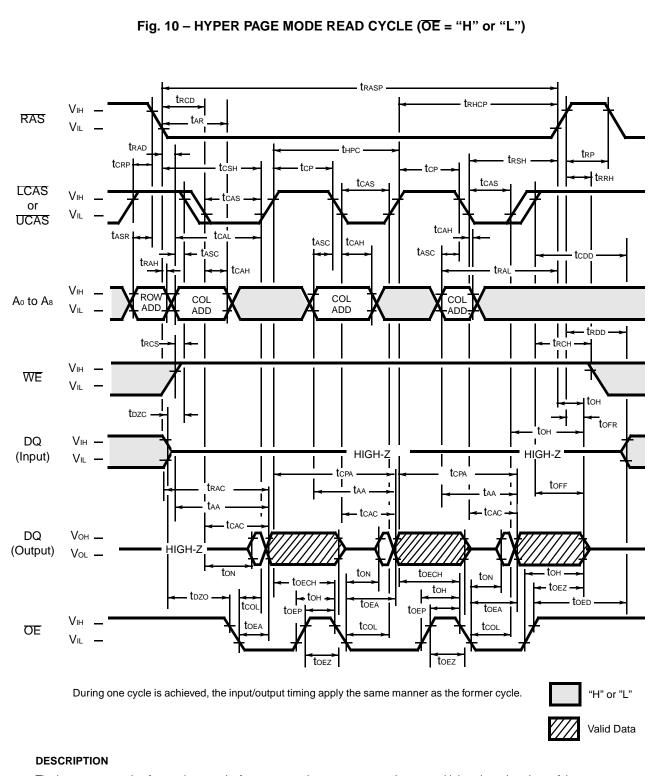

To implement a read operation, a valid address is latched by the RAS and LCAS or UCAS address strobes and with WE set to a High level and \overline{OE} set to a Low level, the output is valid once the memory access time has elapsed. DQ₈-DQ₁₆ pins is valid when RAS and CAS are High or until OE goes High. The access time is determined by RAS(t_{RAC}), LCAS/UCAS(t_{CAC}), \overline{OE} (t_{DEA}) or column addresses (t_{AA}) under the following conditions:

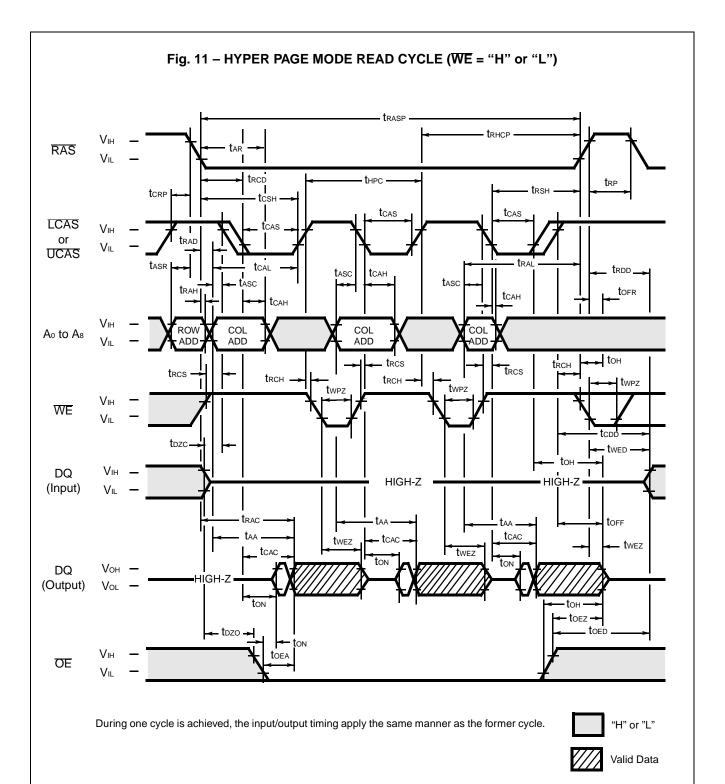

If trcd > trcd (max), access time = tcac.


If trad > trad (max), access time = taa.

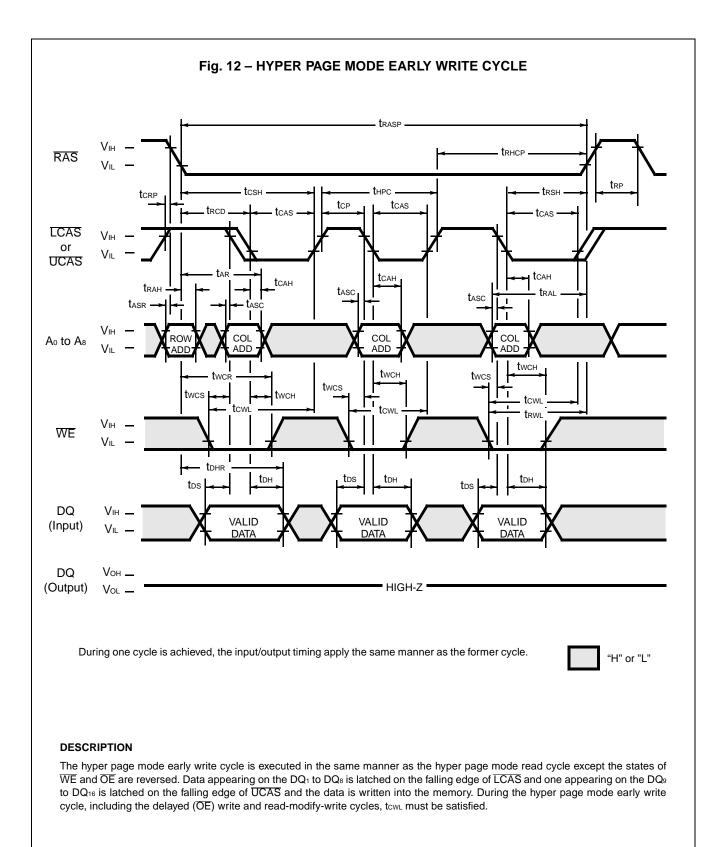

If OE is brought Low after trac, tcac, or taa (whichever occurs later), access time = toEA.

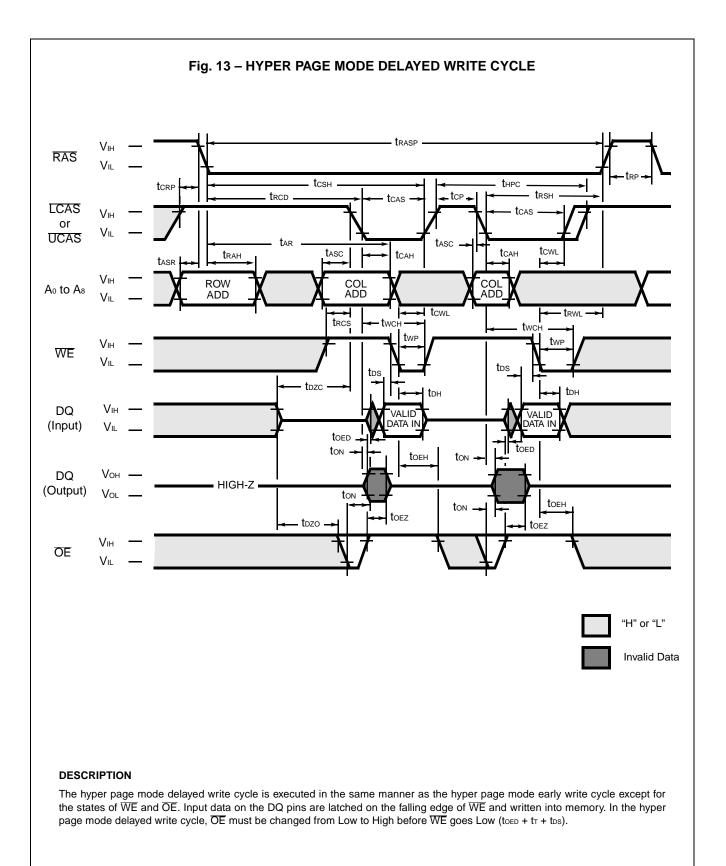
However, if either ICAS/UCAS or OE goes High, the output returns to a high-impedance state after toH is satisfied.

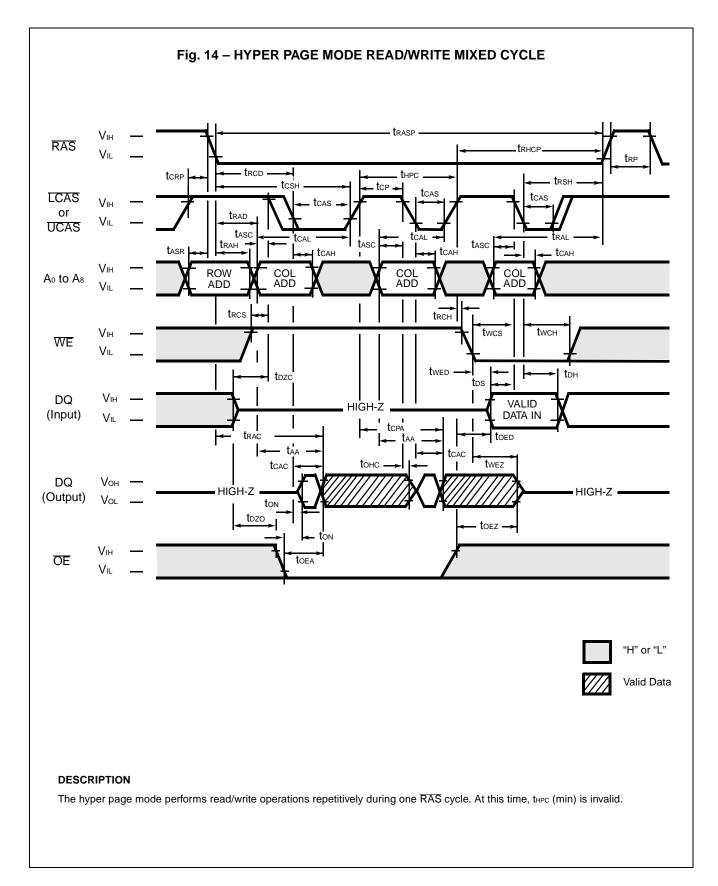


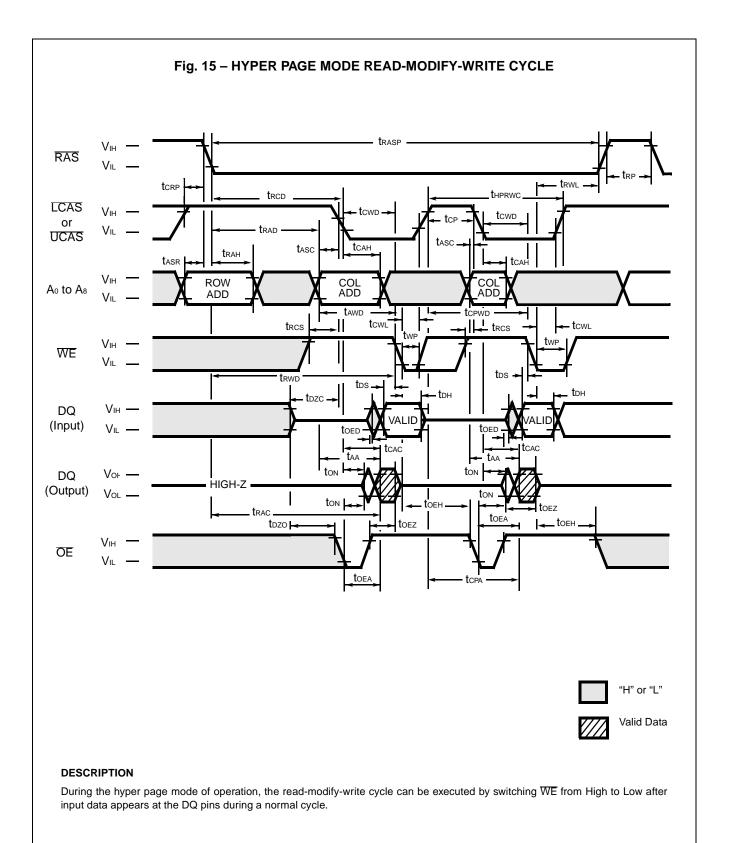


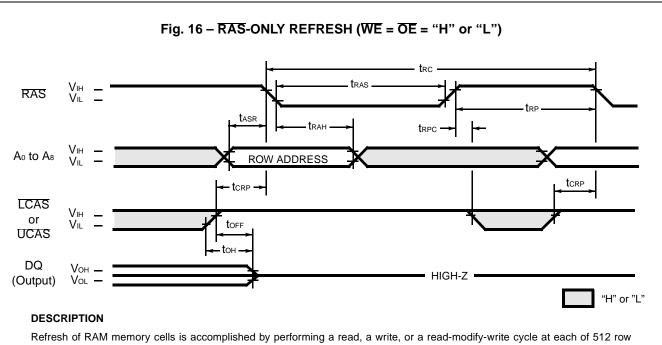
The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining \overline{RAS} at a Low level and \overline{WE} at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tcac, taa, tcpa, or toEA, whichever one is the latest in occurring.

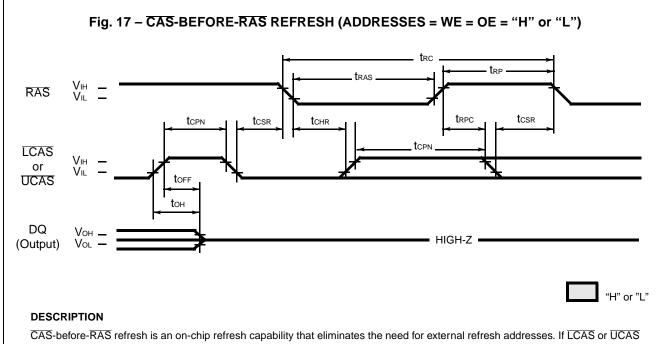


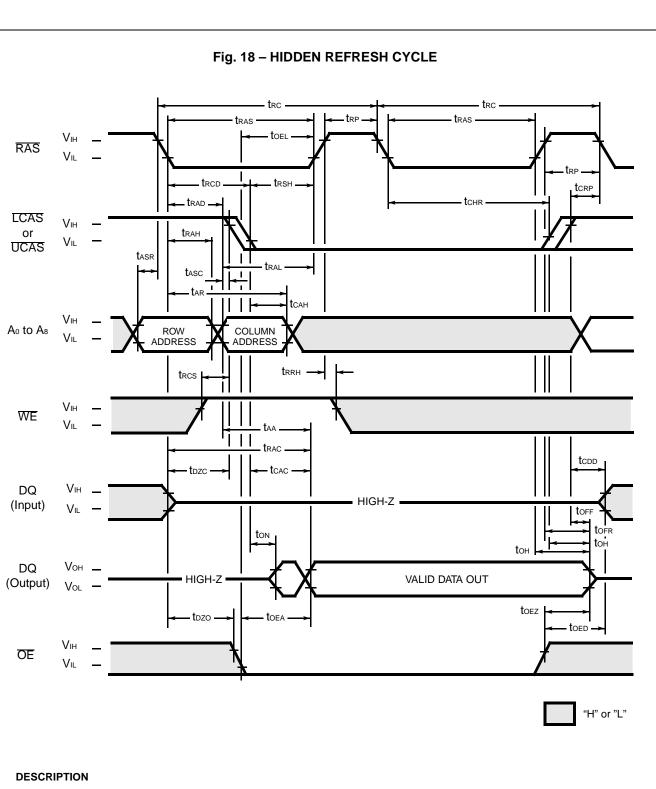

The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining RAS at a Low level and WE at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tcac, taa, tcPa, or toEA, whichever one is the latest in occurring.



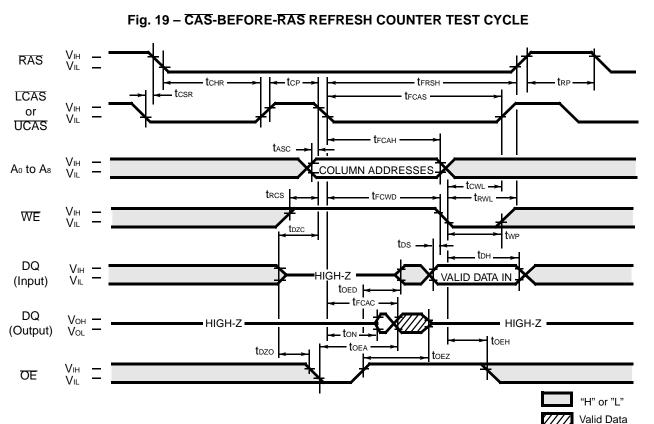

DESCRIPTION


The hyper page mode of operation permits faster successive memory operations at multiple column locations of the same row address. This operation is performed by strobing in the row address and maintaining \overrightarrow{RAS} at a Low level and \overrightarrow{WE} at a High level during all successive memory cycles in which the row address is latched. The access time is determined by tcac, taa, tcPa, or toEa, whichever one is the latest in occurring.





addresses every 8.2-milliseconds. Three refresh modes are available: RAS-only refresh, CAS-before-RAS refresh, and hidden refresh.


RAS-only refresh is performed by keeping RAS Low and LCAS and UCAS High throughout the cycle; the row address to be refreshed is latched on the falling edge of RAS. During RAS-only refresh, DQ pins are kept in a high-impedance state.

CAS-before-RAS refresh is an on-chip refresh capability that eliminates the need for external refresh addresses. If LCAS or UCAS is held Low for the specified setup time (tcsR) before RAS goes Low, the on-chip refresh control clock generators and refresh address counter are enabled. An internal refresh operation automatically occurs and the refresh address counter is internally incremented in preparation for the next CAS-before-RAS refresh operation.

A hidden refresh cycle may be performed while maintaining the latest valid data at the output by extending the active time of LCAS or UCAS and cycling RAS. The refresh row address is provided by the on-chip refresh address counter. This eliminates the need for the external row address that is required by DRAMs that do not have CAS-before-RAS refresh capability.

DESCRIPTION

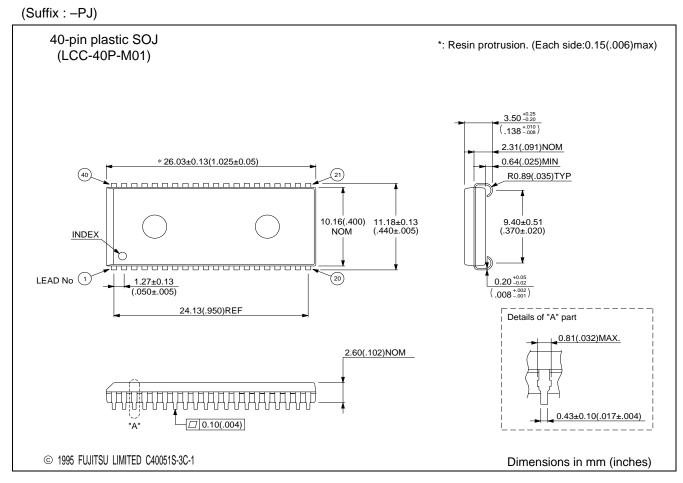
A special timing sequence using the CAS-before-RAS refresh counter test cycle provides a convenient method to verify the functionality of CAS-before-RAS refresh cycle, if LCAS or UCAS makes a transition from High to Low while RAS is held Low, read and write operations are enabled as shown above. Row and column addresses are defined as follows: Row Address: Bits A₀ through A₈ are defined by the on-chip refresh counter.

Column Address: Bits Ao through Aa are defined by latching levels on Ao-Aa at the second falling edge of LCAS or UCAS.

The CAS-before-RAS Counter Test procedure is as follows ;

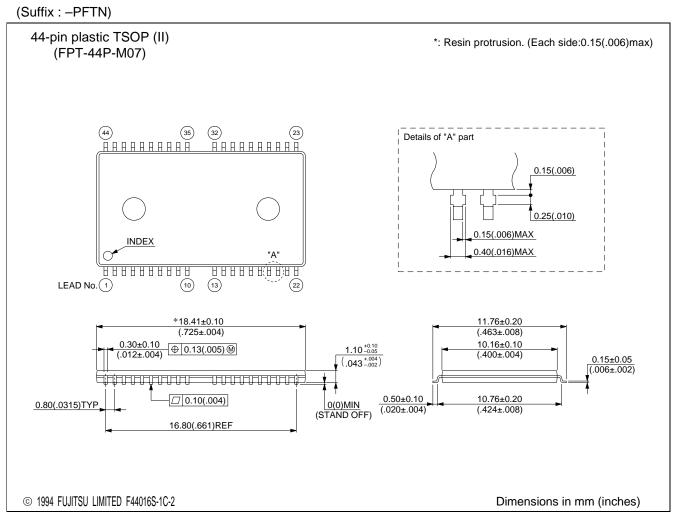
- 1) Normalize the internal refresh address counter by using 8 RAS-only refresh cycles.
- 2) Use the same column address throughout the test.
- 3) Write "0" to all 512 row addresses at the same column address by using CBR refresh counter test cycles.

4) Read "0" written in procedure 3) by using normal read cycle and check; After reading "0" and check are completed (or simultaneously), write "1" to the same addresses by using normal write cycle (or read-modify-write cycle).


- 5) Read and check data "1" written in procedure 4) by using CBR refresh counter test cycle for all 512 memory locations.
- 6) Reverse test data and repeat procedures 3), 4), and 5).

(At recommended operating	conditions	unless otherwise noted.)
---------------------------	------------	--------------------------

No.	Parameter	Symbol	MB814265-60		MB814265-70				
		Symbol	Min.	Max.	Min.	Max.	Unit		
90	Access Time from CAS	t FCAC		55	—	55	μs		
91	Column Adress Hold Time	t FCAH	30	—	30	—	ns		
92	CAS to WE Delay Time	trcwd	80	—	80	—	ns		
93	CAS Pulse Width	t FCAS	55	—	55	_	μs		
94	RAS Hold Time	t FRSH	55	_	55	_	ns		
95	CAS Hold Time	t FCSH	85	_	85	_	ns		


Note: Assumes that CAS-before-RAS refresh counter test cycle only.

PACKAGE DIMENSIONS

(Continued)

(Continued)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka Nakahara-ku, Kawasaki-shi Kanagawa 211-8588, Japan Tel: (044) 754-3763 Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park Singapore 556741 Tel: (65) 281-0770 Fax: (65) 281-0220

http://www.fmap.com.sg/

F9803 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.